

CHAPTER 1 Building a User
Interface
Your application’s user interface is agrueably the most important
part any application. The old saying “You don’t get a second
chance to make a first impression” couldn’t be more true when it
comes to your applications user interface. If the interface is intui-
tive and sloppy, the user will react the same way they might react
to someone who has poor communication skills and cares little
for their appearance. Using your application will be frustrating at
best and at worst, the user will give up and go looking for
another solution to their problem that your application could
have solved. This leaves you with whatever goals you had for
your application unfulfilled.

Fortunately, REALbasic makes building your application’s user
interface so fast and easy that you can spend the time you need
to get the interface just right. REALbasic’s built-in Interface Assis-
tant™ actually helps you build a proper, clean interface.

In this chapter you will learn just about everything you need to
know about creating all of the elements that make up your appli-
REALbasic Developer’s Guide 1

Building a User Interface

2

cations’ user interface. You will learn how to build windows and
menus and some guidelines to following when creating your
interface.

Contents
• Working with Windows
• Interacting with the User Through Controls
• Adding Menus
• User Interface Guidelines

Working with Windows
Typically, most of an application’s user interface will be in win-
dows. This of course is highly application-specific. Some applica-
tions have no windows at all; relying completely on menus to
provide the user interface. REALbasic makes it easy to create new
windows of just about any type, remove them, and fill them with
interface controls like pushbuttons and checkboxes.

Window Types
REALbasic supports 7 different types of windows. The type you
choose for a particular window depends mostly on how the win-
dow will be used.

Document

Document windows are the most common type of window used.
They are most often used when the window will stay open until
the user dismissed it by clicking it’s close box (if it has one) or
clicking a button programmed to close the window. The user can
Building a User Interface

Working with Windows

click on other windows to bring them to the foreground, moving
the document window behind the others. Figure 1 on page 3
shows an example of a small, blank document window.

FIGURE 1. A Document window

Document windows can have a close box, zoom box grow icon
(making them user-resizable).

Movable Modal

This type of window stays in front of all other windows the appli-
cation has open until it is closed. Use a Movable Modal window
when you need to briefly communicate with the user without the
user having access to the rest of the application. Because the
window is movable, the user will be able to drag the window to
another location on the screen in case they need to see informa-
tion in other windows in order to finish what they are doing in
the Movable Modal window. Figure 2 on page 4 shows an exam-
ple of a blank Movable Modal window.
Building a User Interface 3

Building a User Interface

4

FIGURE 2. A Movable Modal window

Movable Modal windows cannot have a close box so you will
need to include a button that the user can click to dismiss the
window unless the window will dismiss itself after the application
finishes a particular task. They also cannot have zoom box or
grow icon so they are not re-sizable by the user. This means you
will have to consider the amount of available screen space the
user will have in determining the size you will make a Movable
Modal window.

Note: There is one exception to the rule regarding Movable Modal windows
being in front of all other windows. If a Movable Modal window or one of it’s
controls executes code that opens a Floating window, the Floating window will
be in front of the Movable Modal window. However, it is poor interface design
for a Movable Modal window to open another window because Movable
Modal windows are mostly used in situations where the interaction with the
user will be brief.

Modal Dialog

These windows are very similar to Movable Modal windows. The
only differences are that unlike Movable Modal windows, Modal
Dialog windows have no titlebar so they cannot be moved. The
Page Setup dialog box is an example of a Modal Dialog window.
Building a User Interface

Working with Windows

FIGURE 3. A Modal Dialog window

Note: Because Modal Dialog windows and Movable Modal windows are both
modal, the same exception applies regarding floating windows opening in
front of Modal windows. See the note for Movable Modal windows on
page 4.

Floating

Like Movable Modal and Modal Dialog windows, a Floating win-
dow (also known as a Windoid) stays in front of all other win-
dows. The difference is that the user can still click on other
windows to access them. If you have more than one Floating
window open, clicking on another Floating window will bring
that window to the front but all open Floating windows will be in
front of all non-floating windows. Because they are always in
front of other types of windows, their size should be kept to a
minimum or they will quickly get in the user’s way. This type of
window is most commonly used to provide tools the use will fre-
quently access.
Building a User Interface 5

Building a User Interface

6

FIGURE 4. A Floating window

Like Document windows, Floating windows can have a close box
and can be user-resizable. However, they cannot have a zoom
box.

Plain Box

These windows are effectively Modal Dialog windows. The only
real difference is in their appear as you can see in Figure 5 on
page 6. Plain Box windows are commonly used for About Box
windows and for applications that need to hide the desktop.

FIGURE 5. A Plain Box
Building a User Interface

Working with Windows

Shadowed Box

Like Plain Box windows, Shadowed Box windows are effectively
Modal Dialog windows. The only difference is their appearance
as you can see in Figure 6 on page 7. Shadowed Box windows
are commonly used for About Box windows.

FIGURE 6. A Shadowed Box

Rounded

Rounded windows act like Document windows. The only differ-
ences are appearance (as you can see in Figure 7 on page 8) and
the fact that Rounded windows cannot have a zoom box or be
resizable. They are not commonly used anymore and there is
really no reason to use them instead of a Document window.
Building a User Interface 7

Building a User Interface

8

FIGURE 7. A Rounded window

Creating Windows
When you create a new project, REALbasic adds a window
named “Window1” to your project automatically. To add addi-
tional windows, choose File ➞ New Window. The windows you
create act as templates. When your application opens one of
these windows, it’s really opening a copy of the window. This
means that your application can open several copies of the same
window at the same time. It’s important to understand this when
creating your user interface because there is no need to go to the
extra trouble of duplicating a window in the Design environment
if your application needs to open two of them at the same time.

Removing Windows
To remove a window from your project, simply click on it once in
the Project window to select it and press the Delete key. REALba-
sic supports the Undo feature better than most applications. If
you delete a window by mistake, choose Edit ➞ Undo (1-Z).
Building a User Interface

Interacting with the User Through Controls

StaticText

Rectangle

Oval

PushButton

RadioButton

EditField

ScrollBar

TabPanel

Timer

Serial

MoviePlayer

Pointer

Line

Round
Rectangle

GroupBox

CheckBox

Popup
Menu
ListBox

Slider

Progress
Bar

Socket

Canvas

NotePlayer
Interacting with the User
Through Controls
Users provide information to your application through user inter-
face controls. REALbasic provides a tremendous amount of flexi-
bility in this area. Not only are there many built-in controls, but
you can even create your own controls (you will learn more about
this later).

Adding, Changing and Removing Controls
REALbasic makes adding, changing and removing controls easy.

Adding Controls

To add a control to a window in your project, do this:

1. Bring the window to the front. If it’s not open, double-click on it in
the Project window to open it.

2. Drag the desired control from the Tools window and drop it on the
window.

Selecting Controls

Controls can be selected with one of two ways: using the mouse
button or with the Tab key. If you click on a control, it will be
selected. When a control is selected, REALbasic draws a border
around the control using your highlight color selected in your
Appearance control panel.

You can also move through the controls in a window by pressing
the Tab key. Each time you press the Tab key, REALbasic will move
from one control to another. This is also the order the user will
move through the controls when using the Tab key. For more
information, see “Changing The Tab Order” on page 12. Holding
down the Shift key while pressing the Tab key will select controls
Building a User Interface 9

Building a User Interface

10

in reverse Tab order. If only one control is selected, REALbasic will
draw resize squares at each corner of the control. You can select
several controls by holding down the Shift key as you click on
controls.

Changing a Control’s Position

A controls position can be changed by dragging the control using
the mouse, by using the arrow keys (to move it one pixel at a
time in any direction) and by changing the Position properties in
the Properties window.

Changing a Control’s Properties with the Properties
window

Some changes to a control must be made with the Properties
window. For example, controls can be rearranged by simply drag-
ging them from one place to another inside the window. How-
ever, most of the changes you make to controls will be made
using the Properties window.

The Properties window displays the properties of the currently
selected control that can be changed from the Design environ-
ment. If more than one control is selected, the Properties window
displays only those properties common to all of the selected con-
trols.

Some properties are entered by typing, while others with on/off-
type values are represented by a checkbox. Some properties that
require you to choose a value from a fixed list are displayed as
popup menus. Color properties display the selected color. These
colors can be changed by clicking on the color and using the
Color Picker to choose a color or by dragging a color from the
Colors window and dropping on a color property.
Building a User Interface

Interacting with the User Through Controls

Removing Controls

To remove a control from a window, do this:

1. Bring the window that contains the control to the front. If it’s not
open, double-click on it in the Project window to open it.

2. Click on the control to select it.

3. Choose Edit ➞ Cut (1-X), or press the Delete key.

Understanding Control Layers
Each control in a window has it’s own layer. This layer is like a
clear piece of plastic and determines whether one control is in
front of the other. The Arrange menu provides commands for
moving a control forward one layer, to the front, backwards one
layer and to the very back of the layers. These layers will usually
only be important when controls are going to overlap. For exam-
ple, when you place controls on top of a GroupBox control or a
TabPanel control, the GroupBox or TabPanel must be in back of
the other controls. Otherwise, the GroupBox or TabPanel will be
in front of one or more of the controls, obscuring them from
view. Control layers also determine the order that your applica-
tion will go through the controls as the user presses the Tab key.
However, you don’t have to rearrange the layers of controls in
order to determine their tab order. Instead, you can use the Con-
trol Order dialog to determine the tab order. See “Changing The
Tab Order” on page 12 for more details.

Understanding The Focus
The focus is a visual cue that tells the user which control will
receive keystrokes. Only EditFields and ListBoxes can receive the
focus. EditFields display the focus by showing a blinking cursor.
When a ListBox has focus, REALbasic draws a border around the
ListBox. If the user is running System 7, this border will be a black
rectangle. If the user is running MacOS8, the border will drawn in
Building a User Interface 11

Building a User Interface

12

the Accent Color chosen in the user’s Appearance control panel.
When a ListBox has the focus, it automatically responds to the
arrow keys. It also receives any other keys the user types. This
allows you to provide type selection functionality where typing
automatically selects the item that matches the characters being
typed. An example of type selection is provided with REALbasic.

FIGURE 8. A ListBox with the focus (System 7 and MacOS8)

Note: A Listbox will not receive the focus if it’s the only item in the window
that can receive the focus.

Changing The Tab Order
You can change the order of controls that will receive the focus
as the user presses the Tab key by using the Control Order dialog
box. This dialog box displays a list of controls from the current
window in the current tab order (from first to last).

The Appearance of Controls
The part of the Macintosh Operating System (MacOS) that han-
dles how menus, windows and controls will appear is called the
Appearance Manager. If you are running MacOS8 or greater, you
have probably used the Appearance Control Panel to select a
Building a User Interface

Interacting with the User Through Controls

highlight color and perhaps an accent color. A future release of
the MacOS will add a new feature called “Themes” to the
Appearance Manager. Themes will provide several “looks” that
allow the user to subtly or radically change the appearance of
menus, windows and controls. This in no way changes the func-
tionality of the interface. This is simply a way to take the idea of
allowing the user to customize their computing environment one
step further.

REALbasic supports the Appearance Manager. This means that
REALbasic itself will appear differently based on your Appearance
Control Panel settings. It also means that when Themes become
available in a future release of the MacOS, REALbasic’s interface
will change based on the Theme the user chooses. The applica-
tions you create with REALbasic also support the Appearance
Manager automatically.

If you would like to have Themes now, there is a shareware sys-
tem extension that provides the equivalent of Themes. It’s called
Kaleidoscope and it runs under System 7 and MacOS8. You can
download it from www.download.com. If you are planning on
distributing the application you build to a large number of peo-
ple, it would probably be worth your time to install Kaleidoscope
and check out how your interface works with Themes. This will
allow you to make small changes if you need to so that when
your users install a MacOS that supports Themes, your interface
will look just right. Figure 9 on page 13 shows a standard push-
button as it appears with different Kaleidoscope themes.

FIGURE 9. A standard PushButton displayed in 3 different
Kaleidoscope Themes
Building a User Interface 13

Building a User Interface

14

Apple Computer updated the look for many interface elements in
MacOS8. You (or your users) may have even installed a system
extension called Aaron that changed the appearance of the inter-
face in System 7 to make it look like MacOS8. Part of this change
was giving the controls a more “3D” look. REALbasic, by default,
will draw controls with this 3D look regardless of whether the
user is running System 7, System 7 with the Aaron extension or
MacOS8. If you want your interface to appear as similar as possi-
ble to the interface of other applications the user is running, you
will want to uncheck the Use 3D Controls option in the Project
Settings dialog box available under the Edit menu.

Button Controls for Performing Actions
There are three controls that are commonly used to perform
actions when clicked: the CheckBox, the PushButton, and the
RadioButton.

PushButton

When clicked, a PushButton appears to depress giving the user
feedback that they have clicked it. Pushbuttons are typically used
to take an immediate and obvious action when pressed, like
printing a report or closing a window.

FIGURE 10. A PushButton pressed and unpressed

TABLE 1. PushButton properties

Name Description

Super The class of object the PushButton is based on.

Name The internal name of the PushButton used to identify it in
programming code.
Building a User Interface

Interacting with the User Through Controls

Index The PushButton’s position in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the PushButton.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the PushButton.

Width The width (in pixels) of the PushButton.

Height The height (in pixels) of the PushButton.

LockLeft Keeps the distance between the left side of the window
and the left side of the PushButton from changing when
the window is resized.

LockTop Keeps the distance between the top of the window and
the top of the PushButton from changing when the win-
dow is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the PushButton from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the PushButton from changing when
the window is resized.

Visible The PushButton will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the PushButton.

Caption The text that appears on the PushButton.

Default Adds the standard default ring to the PushButton and
associates the Return and Enter keys with the it.

Cancel Associates the Escape key and Command-Period key combi-
nation with the PushButton.

Enabled The PushButton will be initially enabled.

TextFont The font used to display the PushButton’s caption.

TextSize The font size used to display the PushButton’s caption.

Bold Adds the bold style to the PushButton’s caption.

Italic Adds the italic style to the PushButton’s caption.

Underline Adds the underline style to the PushButton’s caption.

TABLE 1. PushButton properties

Name Description
Building a User Interface 15

Building a User Interface

16

CheckBox

Checkboxes are used to let the user state a preference that has
only two possible choices where one of the choices can be
selected by default. Checkboxes should not cause an immediate
and obvious action to occur when pressed except perhaps to
enable or disable other controls.

FIGURE 11. A CheckBox checked and unchecked

If space permits, consider using two RadioButton controls instead
of a single CheckBox control as it will make the user’s choice
more obvious especially to the new computer user.

TABLE 2. CheckBox properties

Name Description

Super The class of object the CheckBox is based on.

Name The internal name of the CheckBox used to identify it in
programming code.

Index The position of the CheckBox in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the CheckBox.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the CheckBox.

Width The width (in pixels) of the CheckBox.

Height The height (in pixels) of the CheckBox.

LockLeft Keeps the distance between the left side of the window
and the left side of the CheckBox from changing when the
window is resized.
Building a User Interface

Interacting with the User Through Controls

RadioButton

RadioButtons are used to present the user with two or more
choices where one of the choices can be selected by default.
Selecting one RadioButton causes the RadioButton that is cur-
rently selected to become unselected. They are called RadioBut-
tons because they act just like the buttons on old car radios
where pushing one button would cause the previously pushed
button to pop back out. RadioButtons should always be dis-
played in groups of at least two.

LockTop Keeps the distance between the top of the window and
the top of the CheckBox from changing when the window
is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the CheckBox from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the CheckBox from changing when the
window is resized.

Visible The CheckBox will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the CheckBox.

Caption The text that appears on the PushButton.

Enabled The CheckBox will be initially enabled.

TextFont The font used to display the CheckBox caption.

TextSize The font size used to display the CheckBox caption.

Bold Adds the bold style to the CheckBox caption.

Italic Adds the italic style to the CheckBox caption.

Underline Adds the underline style to the CheckBox caption.

Value The default value of the CheckBox.

TABLE 2. CheckBox properties

Name Description
Building a User Interface 17

Building a User Interface

18

FIGURE 12. A group of RadioButtons with one selected

If you are creating a window that will have two or more indepen-
dent sets of RadioButtons, you will need to use a GroupBox con-
trol to make your RadioButton groups respond independently.
See “GroupBox” on page 33.

TABLE 3. RadioButton properties

Name Description

Super The class of object the RadioButton is based on.

Name The internal name of the RadioButton used to identify it in
programming code.

Index The position of the RadioButton in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the RadioButton.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the RadioButton.

Width The width (in pixels) of the RadioButton.

Height The height (in pixels) of the RadioButton.

LockLeft Keeps the distance between the left side of the window
and the left side of the RadioButton from changing when
the window is resized.

LockTop Keeps the distance between the top of the window and
the top of the RadioButton from changing when the win-
dow is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the RadioButton from changing when
the window is resized.
Building a User Interface

Interacting with the User Through Controls

Controls for Displaying and Entering Text
REALbasic provides controls that let you display text the user
can’t select, display text the user can select but not edit and dis-
play text the user can both select and edit.

StaticText

Used to display text that the user shouldn’t be able to select.
StaticText controls are most commonly used to label other con-
trols (like PopupMenus) or provide titles for groups of controls.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the RadioButton from changing when
the window is resized.

Visible The RadioButton will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the RadioButton.

Caption The text that appears on the RadioButton.

Enabled The RadioButton will be initially enabled.

TextFont The font used to display the RadioButton caption.

TextSize The font size used to display the RadioButton caption.

Bold Adds the bold style to the RadioButton caption.

Italic Adds the italic style to the RadioButton caption.

Underline Adds the underline style to the RadioButton caption.

Value The default value of the RadioButton.

TABLE 3. RadioButton properties

Name Description
Building a User Interface 19

Building a User Interface

20

FIGURE 13. A StaticText control used to label a PopupMenu control

TABLE 4. StaticText properties

Name Description

Super The class of object the StaticText is based on.

Name The internal name of the StaticText used to identify it in
programming code.

Index The position of the StaticText in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the StaticText.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the StaticText.

Width The width (in pixels) of the StaticText.

Height The height (in pixels) of the StaticText.

LockLeft Keeps the distance between the left side of the window
and the left side of the StaticText from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and
the top of the StaticText from changing when the window
is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the StaticText from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the StaticText from changing when the
window is resized.

Visible The StaticText will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the StaticText.

Text The text that appears in the window.

TextAlign The alignment of the text within it’s area (left, middle,
right).
Building a User Interface

Interacting with the User Through Controls

EditField

EditFields can be used to allow the user to enter text or to display
text that can copied to the clipboard but not changed in the Edit-
Field. They can also be configured to allow multiple lines of text,
display a scrollbar if necessary, and display text in multiple fonts,
styles and sizes.

FIGURE 14. A Empty EditField

FIGURE 15. An EditField configured for multiple lines of text

TextFont The font used to display the StaticText caption.

TextColor The color of the text.

Multiline Causes the text to start at the top of it’s area rather than
being centered vertically within it.

TextSize The font size used to display the StaticText caption.

Bold Adds the bold style to the StaticText caption.

Italic Adds the italic style to the StaticText caption.

Underline Adds the underline style to the StaticText caption.

TABLE 4. StaticText properties

Name Description
Building a User Interface 21

Building a User Interface

22

FIGURE 16. An Editfield with multiple fonts, styles and sizes

TABLE 5. EditField properties

Name Description

Super The class of object the EditField is based on.

Name The internal name of the EditField used to identify it in
programming code.

Index The position of the EditField in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the EditField.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the EditField.

Width The width (in pixels) of the EditField.

Height The height (in pixels) of the EditField.

LockLeft Keeps the distance between the left side of the window
and the left side of the EditField from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and
the top of the EditField from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the EditField from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the EditField from changing when the
window is resized.

Visible The EditField will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the EditField.

Border Draws a border around the EditField.
Building a User Interface

Interacting with the User Through Controls
Controls for Displaying and Entering Numeric
Values
REALbasic provides controls that can be used to let the user
choose a numeric value from a range or to display a numeric
value from a range. In some cases, these controls can also be
used to control the display of another control. For example, a
ScrollBar control might be used to determine which portion of a
picture in a Canvas control is displayed (in other words, act as the
Canvas control’s scrollbar).

ScrollBar

ScrollBars can be presented vertically or horizontally. By default,
they are horizontal. To make a vertical ScrollBar, simply resize the

Multiline Causes the text to start at the top of it’s area rather than
being centered vertically within it.

ScrollBar Displays a scrollbar if Multiline property is checked.

ReadOnly Allows copying of text to the clipboard but no editing.

Styled Allows EditField to contain styled (multiple fonts, styles
and sizes) text.

Password Every character entered is replaced with a bullet character.
The actual characters typed are stored in the Text property.

LimitText The maximum number of characters allowed (0=no limit).

Enabled The EditField will be enabled when the window opens.

TextFont The font used to display the EditField caption.

TextSize The font size used to display the EditField caption.

Bold Adds the bold style to the EditField caption.

Italic Adds the italic style to the EditField caption.

Underline Adds the underline style to the EditField caption.

Text The default value of the EditField.

TABLE 5. EditField properties

Name Description
Building a User Interface 23

Building a User Interface

24
Scrollbar object so that the height is greater than the width.
While you can resize a ScrollBar to any proportions, Horizontal
ScrollBars should always be 16 pixels tall and vertical ScrollBars
should be 16 pixels wide.

FIGURE 17. Horizontal and vertical ScrollBars

TABLE 6. ScrollBar Properties

Name Description

Super The class of object the ScrollBar is based on.

Name The internal name of the ScrollBar used to identify it in
programming code.

Index The position of the ScrollBar in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the ScrollBar.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the ScrollBar.

Width The width (in pixels) of the ScrollBar.

Height The height (in pixels) of the ScrollBar.

LockLeft Keeps the distance between the left side of the window
and the left side of the ScrollBar from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and
the top of the ScrollBar from changing when the window is
resized.
Building a User Interface

Interacting with the User Through Controls
Slider

This control was added in MacOS8. It is effectively identical to a
ScrollBar control in functionality. However, ScrollBar controls have
come to be associated with scrolling text or a picture and less
with assigning numeric values. The Slider control provides an
interface that is clearly for increasing or decreasing a numeric
value. Like the ScrollBar, the Slider control can appear horizontally
(which is the default) or vertically. You can create a vertical Slider

LockRight Keeps the distance between the right side of the window
and the right side of the ScrollBar from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the ScrollBar from changing when the
window is resized.

Visible The ScrollBar will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the ScrollBar.

Enabled The ScrollBar will be initially enabled.

Minimum The value of the Value property when the scroll indicator is
all the way left (for horizontal scrollbars) or at the very top
(for vertical scrollbars).

Value The current position of the scroll indicator.

Maximum The value the Value Property will be set to when the scroll
indicator is all the way to the right (for horizontal scroll-
bars) or at the bottom (for vertical scrollbars).

Span

LineStep The amount by which the Value property will change when
the user clicks on one of the ScrollBar’s arrows.

PageStep The amount by which the Value property will change when
the user clicks inside the ScrollBar on either side of the
scroll indicator.

LiveScroll

TABLE 6. ScrollBar Properties

Name Description
Building a User Interface 25

Building a User Interface

26
by changing its height so that it’s greater than it’s width. Unlike
the ScrollBar control, the Slider control automatically maintains
the correct proportions regardless of the dimensions you give it.
Because the Slider was added in MacOS8, for System 7 users the
Slider control will appear as a ScrollBar.

FIGURE 18. A horizontal and vertical Slider controls

TABLE 7. Slider properties

Name Description

Super The class of object the Slider is based on.

Name The internal name of the Slider used to identify it in pro-
gramming code.

Index The position of the Slider in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the Slider.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the Slider.

Width The width (in pixels) of the Slider.

Height The height (in pixels) of the Slider.

LockLeft Keeps the distance between the left side of the window
and the left side of the Slider from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and
the top of the Slider from changing when the window is
resized.
Building a User Interface

Interacting with the User Through Controls
ProgressBar

ProgressBars are designed for showing that some function of
your application is making progress (hence the name) towards its
goal or to show capacity. Unlike ScrollBars and Sliders, Progress-
Bars are designed for displaying a value. They cannot be used for
data entry. They can also appear only in a horizontal orientation.
When using a ProgressBar to show duration, the ProgressBar can

LockRight Keeps the distance between the right side of the window
and the right side of the Slider from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the Slider from changing when the win-
dow is resized.

Visible The Slider will initially be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the Slider.

Enabled The Slider will be initially enabled.

Minimum The value of the Value property when the indicator is all
the way left (for horizontal Sliders) or at the very top (for
vertical Sliders).

Value The current position of the indicator.

Maximum The value the Value Property will be set to when the indi-
cator is all the way to the right (for horizontal Sliders) or at
the bottom (for vertical Sliders).

LineStep This property is only used when the user is running System
7 as the Slider appears as a Scrollbar. The amount by which
the Value property will change when the user clicks on one
of the ScrollBar’s arrows.

PageStep This property is only used when the user is running System
7 as the Slider appears as a Scrollbar. The amount by which
the Value property will change when the user clicks inside
the ScrollBar on either side of the scroll indicator.

LiveScroll

TABLE 7. Slider properties

Name Description
Building a User Interface 27

Building a User Interface

28
be configured to show progress where the length is determinate
and indeterminate. Indeterminate ProgressBars are often referred
to as “Barber Poles.”

FIGURE 19. Determinate and indeterminate ProgressBars

TABLE 8. ProgressBar properties

Name Description

Super The class of object the ProgressBar is based on.

Name The internal name of the ProgressBar used to identify it in
programming code.

Index The position of the ProgressBar in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the ProgressBar.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the ProgressBar.

Width The width (in pixels) of the ProgressBar.

Height The height (in pixels) of the ProgressBar.

LockLeft Keeps the distance between the left side of the window
and the left side of the ProgressBar from changing when
the window is resized.

LockTop Keeps the distance between the top of the window and
the top of the ProgressBar from changing when the win-
dow is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the ProgressBar from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the ProgressBar from changing when
the window is resized.

Visible The ProgressBar will initially be visible when the window
opens.
Building a User Interface

Interacting with the User Through Controls
Controls for Presenting the User a List of Choices
RadioButton and CheckBox controls can of course be used to
provide the user with a list of choices. There are situations, how-
ever, when using these controls is either an inefficient use of
space or impossible. Some of these situations are:

• When the number of choice items is quite long making it
difficult or impossible to use RadioButton or CheckBox
controls

• When the choices change dynamically based on the
application’s logic

• When the choice items need to display more than one
column of information

If your situation doesn’t match one of the above, consider using
RadioButton or CheckBox controls instead. They are easier for a
new computer user to handle because all of their choices will be
right in front of them.

ListBox

ListBox controls display a scrolling list of values. The user can use
the mouse or the arrow keys to choose an item. ListBox controls
can contain one or more columns of data.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the ProgressBar.

Value The current position of the indicator.

Maximum The value the Value Property will be set to when the indi-
cator is all the way to the right.

TABLE 8. ProgressBar properties

Name Description
Building a User Interface 29

Building a User Interface

30
FIGURE 20. Single and multi-column ListBoxes

TABLE 9. ListBox properties

Name Description

Super The class of object the ListBox is based on.

Name The internal name of the ListBox used to identify it in pro-
gramming code.

Index The position of the ListBox in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the ListBox.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the ListBox.

Width The width (in pixels) of the ListBox.

Height The height (in pixels) of the ListBox.

LockLeft Keeps the distance between the left side of the window
and the left side of the ListBox from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and
the top of the ListBox from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the ListBox from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the ListBox from changing when the
window is resized.

Visible The ListBox will initially be visible when the window opens.
Building a User Interface

Interacting with the User Through Controls
PopupMenu

PopupMenu controls are useful when you have a single column
of data to present and have limited space with which to work.

FIGURE 21. A Popupmenu control

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the ListBox.

Column-
Count

The number of columns the ListBox can display.

Column-
Widths

A list of comma-separated values, with each value control-
ling the width of the associated column. Each value can be
express in pixels or as a percentage.

Enabled The ListBox will be initially enabled.

TextFont The font used to display the ListBox caption.

TextSize The font size used to display the ListBox caption.

Bold Adds the bold style to the ListBox caption.

Italic Adds the italic style to the ListBox caption.

Underline Adds the underline style to the ListBox caption.

TABLE 10. PopupMenu properties

Name Description

Super The class of object the PopupMenu is based on.

Name The internal name of the PopupMenu used to identify it in
programming code.

Index The position of the PopupMenu in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the PopupMenu.

TABLE 9. ListBox properties

Name Description
Building a User Interface 31

Building a User Interface

32
Controls for Visually Grouping Other Controls
If a window contains groups of controls where each group of
controls is serving a different purpose, it can be confusing to the
user to see all of these groups simply lumped together in a win-
dow. It often makes sense (and is sometimes necessary) to visu-

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the PopupMenu.

Width The width (in pixels) of the PopupMenu.

Height The height (in pixels) of the ListBox.

LockLeft Keeps the distance between the left side of the window
and the left side of the PopupMenu from changing when
the window is resized.

LockTop Keeps the distance between the top of the window and
the top of the PopupMenu from changing when the win-
dow is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the PopupMenu from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the PopupMenu from changing when
the window is resized.

Visible The PopupMenu will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the PopupMenu.

Enabled The PopupMenu will be initially enabled.

TextFont The font used to display the PopupMenu caption.

TextSize The font size used to display the PopupMenu caption.

Bold Adds the bold style to the PopupMenu caption.

Italic Adds the italic style to the PopupMenu caption.

Underline Adds the underline style to the PopupMenu caption.

TABLE 10. PopupMenu properties

Name Description
Building a User Interface

Interacting with the User Through Controls
ally group related controls. Fortunately, REALbasic provides two
built-in controls to make grouping controls simple.

GroupBox

A GroupBox can be displayed with or without a caption. If a win-
dow has more than one group of RadioButton controls, one of
the groups must be contained within a GroupBox control in order
for the RadioButton groups to function independently.

FIGURE 22. A GroupBox control with and without a caption

TABLE 11. GroupBox properties

Name Description

Super The class of object the GroupBox is based on.

Name The internal name of the GroupBox used to identify it in
programming code.

Index The position of the GroupBox in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the GroupBox.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the GroupBox.

Width The width (in pixels) of the GroupBox.

Height The height (in pixels) of the GroupBox.

LockLeft Keeps the distance between the left side of the window
and the left side of the GroupBox from changing when the
window is resized.
Building a User Interface 33

Building a User Interface

34
TabPanel

When you have several groups of controls and space is very lim-
ited, TabPanels are most appropriate. TabPanels allow several
groups of controls to occupy the same space in the window.
When the user clicks on tab in the TabPanel, REALbasic automati-
cally hides the controls associated with the currently selected tab
and displays those that are associated with the tab the user has
clicked on.

LockTop Keeps the distance between the top of the window and
the top of the GroupBox from changing when the window
is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the GroupBox from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the GroupBox from changing when the
window is resized.

Visible The GroupBox will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the GroupBox.

Caption The text that appears on the GroupBox.

Enabled The GroupBox will be initially enabled.

TextFont The font used to display the GroupBox caption.

TextSize The font size used to display the GroupBox caption.

Bold Adds the bold style to the GroupBox caption.

Italic Adds the italic style to the GroupBox caption.

Underline Adds the underline style to the GroupBox caption.

Value The default value of the GroupBox.

TABLE 11. GroupBox properties

Name Description
Building a User Interface

Interacting with the User Through Controls
FIGURE 23. A two-panel TabPanel control

TABLE 12. TabPanel properties

Name Description

Super The class of object the TabPanel is based on.

Name The internal name of the TabPanel used to identify it in
programming code.

Index The position of the TabPanel in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the TabPanel.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the TabPanel.

Width The width (in pixels) of the TabPanel.

Height The height (in pixels) of the TabPanel.

LockLeft Keeps the distance between the left side of the window
and the left side of the TabPanel from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and
the top of the TabPanel from changing when the window
is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the TabPanel from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the TabPanel from changing when the
window is resized.
Building a User Interface 35

Building a User Interface

36
Controls for Displaying Graphics and Pictures
REALbasic is very flexible when it comes to displaying graphics
and pictures. You can use the built-in graphic controls, display
pictures from documents or draw the graphics using REALbasic’s
programming language.

Line

Draws a line that can be of any length, width, color and direc-
tion. Lines are 100 pixels in length, 1 pixel in width, black and
horizontal by default.

Visible The TabPanel will initially be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the TabPanel.

Enabled The TabPanel will be initially enabled.

TABLE 13. Line properties

Name Description

Super The class of object the Line is based on.

Name The internal name of the Line used to identify it in pro-
gramming code.

Index The position of the Line in a control array.

X1 The distance (on the horizontal axis) from the left side of
the window to the end of the Line that is leftmost by
default.

X2 The distance (on the horizontal axis) from the left side of
the window to the end of the Line that is right most by
default.

Y1 The distance (on the vertical axis) from the top of the win-
dow to the end of the Line that is leftmost by default.

TABLE 12. TabPanel properties

Name Description
Building a User Interface

Interacting with the User Through Controls
Rectangle

Draws a rectangle that can be of any length, width, border color,
and fill color. Rectangles are 100 pixels in length and width, 1
pixel in width, have black borders and a white center by default.
Because you can control the color of the left and top borders
independently from the right and bottom borders, you can easily
create rectangles that appear to be sunken or raised.

FIGURE 24. A Rectangle with default, sunken and raised appearances

Y2 The distance (on the vertical axis) from the top of the win-
dow to the end of the Line that is right most by default.

Visible The Line will be visible when the window opens.

Border-
Width

The width (in pixels) of the Line.

LineColor The color of the Line.

TABLE 14. Rectangle properties

Name Description

Super The class of object the Rectangle is based on.

Name The internal name of the Rectangle used to identify it
in programming code.

Index The position of the Rectangle in a control array.

Left The distance (in pixels) between the left edge of the
window and the left edge of the Rectangle.

Top The distance (in pixels) between the top edge of the
window and the top edge of the Rectangle.

TABLE 13. Line properties

Name Description
Building a User Interface 37

Building a User Interface

38
RoundRectangle

RoundRectangles are similar to regular Rectangle controls. The
differences are that you don’t have the independent color control
for the border (because it’s one continuous line) but you can con-
trol the width and height of the arcs that make up the round cor-
ners.

Width The width (in pixels) of the Rectangle.

Height The height (in pixels) of the Rectangle.

LockLeft Keeps the distance between the left side of the win-
dow and the left side of the Rectangle from changing
when the window is resized.

LockTop Keeps the distance between the top of the window
and the top of the Rectangle from changing when
the window is resized.

LockRight Keeps the distance between the right side of the win-
dow and the right side of the Rectangle from chang-
ing when the window is resized.

LockBottom Keeps the distance between the bottom of the win-
dow and the bottom of the Rectangle from changing
when the window is resized.

Visible The Rectangle will be visible when the window
opens.

Balloon Help The text that will appear if the user has Balloon Help
on and moves the pointer over the Rectangle.

FillColor The color that will fill the interior of the Rectangle.

BorderWidth The width (in pixels) of the sides of the Rectangle.

TopLeftColor The color of the lines that make up the top and left
sides of the Rectangle.

BottomRightColor The color of the lines that make up the right and bot-
tom sides of the Rectangle.

TABLE 14. Rectangle properties

Name Description
Building a User Interface

Interacting with the User Through Controls
FIGURE 25. A RoundRectangle control

Oval

Draws an oval with a single pixel, black border and filled with
white. All of these properties can be modified. The “ovalness” of
the Oval is controlled by it’s height and width. For example, an
Oval with the same width and height would be a perfect circle.

FIGURE 26. An Oval control

TABLE 15. Oval properties

Name Description

Super The class of object the Oval is based on.

Name The internal name of the Oval used to identify it in pro-
gramming code.

Index The position of the Oval in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the Oval.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the Oval.

Width The width (in pixels) of the Oval.

Height The height (in pixels) of the Oval.
Building a User Interface 39

Building a User Interface

40
Canvas

A Canvas control can be used to display a picture from a file or a
picture drawn using REALbasic’s programming language. If your
application requires a type of control that is not built-in to REAL-
basic, you can use a Canvas control along with the REALbasic
programming language drawing commands to create the con-
trols you need.

LockLeft Keeps the distance between the left side of the window
and the left side of the Oval from changing when the win-
dow is resized.

LockTop Keeps the distance between the top of the window and
the top of the Oval from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the Oval from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the Oval from changing when the win-
dow is resized.

Visible The Oval will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the Oval.

FillColor The color that will fill the interior of the Oval.

Border-
Width

The width (in pixels) of the sides of the Oval.

BorderColor The color of the Oval’s border.

OvalWidth The width of the arcs that make up the corners.

OvalHeight The height of the arcs that make up the corners.

TABLE 15. Oval properties

Name Description
Building a User Interface

Interacting with the User Through Controls
FIGURE 27. An Canvas control used to create a “Little Arrows” control

Canvas controls can be used to create extremely sophisticated
controls. In Figure 28 on page 41, a Canvas control is used to
provide a table of data with rows that can be selected and col-
umns that can be sorted by clicking on the column title.

FIGURE 28. A sophisticated control created using a Canvas control

The “Little Arrow” and Table controls above were created by
Björn Eiríksson.

TABLE 16. Canvas properties

Name Description

Super The class of object the Canvas is based on.

Name The internal name of the Canvas used to identify it in pro-
gramming code.

Index The position of the Canvas in a control array.
Building a User Interface 41

Building a User Interface

42
Controls for Playing Movies and Music
If the user has QuickTime™ installed, your application can play
QuickTime™ movies and use the QuickTime™ Musical Instru-
ments to play music.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the Canvas.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the Canvas.

Width The width (in pixels) of the Canvas.

Height The height (in pixels) of the Canvas.

LockLeft Keeps the distance between the left side of the window
and the left side of the Canvas from changing when the
window is resized.

LockTop Keeps the distance between the top of the window and
the top of the Canvas from changing when the window is
resized.

LockRight Keeps the distance between the right side of the window
and the right side of the Canvas from changing when the
window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the Canvas from changing when the
window is resized.

Visible The Canvas will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the Canvas.

Backdrop A picture from the Project window that will be displayed
inside the Canvas control.

Enabled The Enabled will be initially enabled.

TABLE 16. Canvas properties

Name Description
Building a User Interface

Interacting with the User Through Controls
MoviePlayer

The MoviePlayer control displays the standard QuickTime™
movie controller. From the Design environment, you can select
the QuickTime™ movie that should be associated with a particu-
lar MoviePlayer control. You can also determine if the controller is
displayed, a badge (a small icon that when clicked, reveals the
controller) is displayed, or no controls are displayed at all.

TABLE 17. MoviePlayer properties

Name Description

Super The class of object the MoviePlayer is based on.

Name The internal name of the MoviePlayer used to identify it in
programming code.

Index The position of the MoviePlayer in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the MoviePlayer.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the MoviePlayer.

Width The width (in pixels) of the MoviePlayer.

Height The height (in pixels) of the MoviePlayer.

LockLeft Keeps the distance between the left side of the window
and the left side of the MoviePlayer from changing when
the window is resized.

LockTop Keeps the distance between the top of the window and
the top of the MoviePlayer from changing when the win-
dow is resized.

LockRight Keeps the distance between the right side of the window
and the right side of the MoviePlayer from changing when
the window is resized.

LockBottom Keeps the distance between the bottom of the window
and the bottom of the MoviePlayer from changing when
the window is resized.

Visible The MoviePlayer will be visible when the window opens.

Balloon Help The text that will appear if the user has Balloon Help on
and moves the pointer over the MoviePlayer.
Building a User Interface 43

Building a User Interface

44
NotePlayer

While the NotePlayer control does display an icon when placed in
a window in the Design environment, it has no interface. It is
designed only for playing musical notes using the QuickTime™
musical instruments. See “NotePlayer Control” on page 58 of the
Language Reference for more details.

AutoResize Resizes the MoviePlayer at runtime to the size of the
QuickTime movie.

Border Draws a border around the MoviePlayer

Speaker Adds the volume slider to the MoviePlayer.

HasStep Adds the previous and next frame buttons to the Mov-
iePlayer.

Movie The movie to be played in the MoviePlayer.

Controller Determines how the controller will appear at the bottom
of the MoviePlayer (none, badge, or controller).

Looping Plays the movie continuously once it has started.

Palindrome Plays the movie backwards once it reaches it’s end.

TABLE 18. NotePlayer properties

Name Description

Super The class of object the NotePlayer is based on.

Name The internal name of the NotePlayer used to identify it in
programming code.

Index The position of the NotePlayer in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the NotePlayer.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the NotePlayer.

Instrument The number that represents the QuickTime Musical Instru-
ment to be used to play notes. See “NotePlayer Control”
on page 59 for a list of instruments.

TABLE 17. MoviePlayer properties

Name Description
Building a User Interface

Interacting with the User Through Controls
Controls for Handling Communications
REALbasic provides controls that allow your application to com-
municate through the serial port (for communicating via a
modem or through a serial cable to another device) and over a
network to other computers using the Internet’s communication
protocol called “TCP/IP.”

Serial

While the Serial control does display an icon when placed in a
window in the Design environment, it has no interface. It is
designed only for executing code to communicate via the serial
port. See “Serial Control” on page 85 of the Language Reference
for more details.

TABLE 19. Serial control properties

Name Description

Super The class of object the Serial control is based on.

Name The internal name of the Serial control used to identify it
in programming code.

Index The position of the Serial control in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the Serial control.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the Serial control.

Port Determines which port (serial or printer) port will be used
to read and write data.

Baud The speed at which data will be read or written through
the chosen port.

Bits Determines the number of data bits used during communi-
cations.

Parity Determines the type of parity (no parity, odd parity, even
parity).

Stop Determines the number of stop bits used during communi-
cations
Building a User Interface 45

Building a User Interface

46
Socket

While the Socket control does display an icon when placed in a
window in the Design environment, it has no interface. It is
designed only for executing code to communicate with other
computers on the Intranet or Internet using TCP/IP. See “Socket
Control” on page 88 of the Language Reference for more details.

The Timer Control
The Timer control is designed to execute some code once or
repeatedly after a period of time has passed. While the Timer
control does display an icon when placed in a window in the

XON Enables XON flow control.

CTS Enables CTS flow control.

DTR Enables DTR flow control.

TABLE 20. Socket control properties

Name Description

Super The class of object the Socket control is based on.

Name The internal name of the Socket control used to identify it
in programming code.

Index The position of the Socket control in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the Socket control.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the Socket control.

Address The IP address to send data to.

Port The TCP/IP port to transmit/receive data on.

TABLE 19. Serial control properties

Name Description
Building a User Interface

Interacting with the User Through Controls
Design environment, it has no interface. See “Timer Control” on
page 103 of the Language Reference for more details.

Changing The Tab (Control) Order
The order in which the user move through controls that receive
the focus (EditFields and ListBoxes) when they press the Tab key,
is called the Control Order (also know as the Tab Order). The con-
trol order is actually controlled by the control layers. When a win-
dow opens, REALbasic places the focus in the control that is
farthest back that can also receive the focus. You could change
the control order by using the Arrange menu to move controls
through the control layers.

Instead, the Control Order dialog box makes the job much easier.

TABLE 21. Timer control properties

Name Description

Super The class of object the Timer control is based on.

Name The internal name of the Timer control used to identify it
in programming code.

Index The position of the Timer control in a control array.

Left The distance (in pixels) between the left edge of the win-
dow and the left edge of the Timer control.

Top The distance (in pixels) between the top edge of the win-
dow and the top edge of the Timer control.

Mode Determines the number of times the Timer will execute
(off, single, multiple).

Period The time in milliseconds between executions.
Building a User Interface 47

Building a User Interface

48
FIGURE 29. The Control Order dialog box

To change the tab order, do this:

1. Choose Arrange ➞ Control Order.

2. Select the control in the list, whose tab order you wish to change.

3. Use the Up button to move the control up one position in the tab
order or the Down key to move the control down one position in the
tab order.

Aligning Controls with Other Controls
REALbasic’s Interface Assistant makes it easy to align a particular
control with another control. Simply drag the control until it is
close to being aligned with the other control. When you get close
to aligning the two controls, REALbasic will snap the control you
are dragging into place and display a dotted line so you can tell
the controls are aligned.
Building a User Interface

Adding Menus
Note: If the Interface Assistant is getting in your way, you can turn it off tem-
porarily by holding down the Command key while dragging a control.

If you need to align several controls, do this:

1. Click on the control whose position is already correct to select it.

2. Choose Arrange ➞ Move to Back to insure that the selected control
will remain in place while the other controls move to align with it.

3. While holding down the Shift key, select each of the controls you
wish to align together.

4. Depending on which edges you wish to align, choose Arrange ➞
Align Objects then choose Align Left Edges, Align Right Edges, Align
Top Edges or Align Bottom Edges from the Align Objects submenu.

Spacing Controls Evenly
REALbasic provides an easy way to reposition controls to evenly
distribute empty space between them.

To evenly distribute the space between controls, do this:

1. Click on a control to select it.

2. Hold down the Shift key and select at least two other controls.

3. To distribute the horizontal space, choose Arrange ➞ Align Objects
then choose Space Horizontally from the Align Objects submenu.

4. To distribute the vertical space, choose Arrange ➞ Align Objects then
choose Space Vertically from the Align Objects submenu.

Adding Menus
REALbasic has a built-in Menu editor that makes adding menus
and menu items to your project easy. The menus displayed in the
Menu Editor will be displayed when you choose Debug ➞ Run
(1-R) in the Design environment or when in a stand-alone version
of your application.
Building a User Interface 49

Building a User Interface

50
Adding Menus
REALbasic adds File and Edit menus to your project automatically.
Every application should have at least a File menu with a Quit
menu item. You can remove the Edit menu if your application has
no controls that could be edited by the Edit menu items.

To add a menu to your project, do this:

1. Bring the Project window to the front by clicking on it. If it’s
obscured by other windows, Choose Window ➞ Project (1-0).

2. Double-click on the Menu object to open the Menu Editor. The
Menu Editor window appears.

3. Click on the dotted rectangle in the Menu Editor’s menu bar to select
it.

4. In the properties window, enter the Name of the menu and the Text
that will appear in the menu bar.

Adding a Help Menu
Most Macintosh applications have a Help menu that is the right-
most menu in the application. At a minimum, this menu has an
About Balloon Help menu item and a Show Balloons menu item.
The Help menu may also contain menu items that give the user
access to Apple Guide files or an application specific help system.
You can add a Help (complete with About Balloon Help and
Show Balloons menu items) menu to your project.

To add a Help menu, do this:

TABLE 22. Menu properties

Name Description

Name The internal name of the Menu used to identify it in pro-
gramming code.

Super The class of object the Menu control is based on.

Text The text that will appear in the Menu bar.
Building a User Interface

Adding Menus
1. Add a menu to the end of your menu bar.

2. Set the Text property of the menu to Help.

Any menu items you add to the Help menu will be displayed after
the About Balloon Help and Show Balloons menu items.

Note: If you are planning on including Apple Guide files with your application,
there is a handy application for generating Guide files. It’s called Guide Com-
poser and you can download a demo version from www.downloads.com.

Adding Menu Items
The Menu Editor makes it easy to add menu items to your
menus. You can assign keyboard shortcuts to menu items but
remember that the Macintosh looks for a shortcut starting from
the left most menu. That means that if you assign the same key-
board shortcut to two different menu items, one of them won’t
work. There are also several specific keyboard shortcuts that
should be reserved for specific functions. According to Apple’s
Macintosh Human Interface Guidelines, these are:

TABLE 23. Reserved keyboard shortcuts

Menu Keys Command

File 1-N New

File 1-O Open…

File 1-W Close

File 1-S Save

File 1-P Print…

File 1-Q Quit

Edit 1-Z Undo

Edit 1-X Cut

Edit 1-C Copy
Building a User Interface 51

Building a User Interface

52
To add a menu item to a menu, do this:

1. In the Menu Editor, select the menu you wish to add a menu item to
by clicking on it.

2. Click on the dotted rectangle at the bottom of the menu to select it.

3. In the Properties window, enter the Name and Text for the menu
item.

Note: While the Menu Editor will allow you to use lowercase characters as key-
board shortcuts, only uppercase characters should be used.

Adding a Submenu
Submenus are menu items that when selected, display an addi-
tional menu to their right. The menu item itself is not selectable.
It acts only as a title for the submenu.

To add a submenu to an existing menu item, do this:

1. Click on the menu item in the Menu Editor to select it.

2. In the Properties window, place a checkmark in the Submenu prop-
erty. A new submenu item appears in the Menu Editor.

3. In the Menu Editor, click on the dotted rectangle that appears in the
new submenu item just to the right of the menu item you selected.

4. In the Properties window, enter the Name and Text for the submenu
Item.

Submenus can give the user fast access to a group of menu
items. However, they can be difficult to navigate for the new
computer user. They also hide menu items from view. If the user

Edit 1-V Paste

Edit 1-A Select All

Edit 1-period Terminate an operation

TABLE 23. Reserved keyboard shortcuts

Menu Keys Command
Building a User Interface

Adding Menus
scans through the menu items looking for a particular menu
item, they may not look at the submenus. Consider the audience
for your application before using submenus. If many of your
users will be new computer users, consider displaying a dialog
box to choose the functions you would have put in a submenu.

Submenu items themselves can be submenus. Seriously consider
your audience when choosing to have multiple level submenus.
Many of your users may find navigating multiple level submenus
difficult.

Moving Menu Items
A menu item can be moved to a new position by dragging the
menu item. You can only move a menu item to another position
on the same menu. If you need to move the menu item to
another menu, you will have to delete it, then re-create it on the
other menu.

To move a menu item, do this:

1. Click on the menu item you want to move to select it.

2. Drag the menu item towards the position on the menu where you
want it. A bold line appears above the menu item.

3. When the bold line is in the position where you want to move the
menu item to, release the mouse button.

Removing Menu Items
To remove a menu item from a menu, do this:

1. In the Menu Editor, click on the menu item to select it.

2. Press the Delete key or choose Edit ➞ Clear.
Building a User Interface 53

Building a User Interface

54
Apple’s Macintosh User Interface
Guidelines
The quality of your application’s interface will determine how suc-
cessful your user will be in using it. It’s absolutely critical that your
user find the interface intuitive. Studies have shown that if a user
can’t accomplish something within the first 15 minutes of using
an application, they will give up in frustration. Beyond simply
being intuitive, the more polished an application’s interface is, the
more professional it will appear to the user. Remember that with-
out realizing it, the user, will be comparing your application’s
interface to all of the other applications they have used.

REALbasic’s Interface Assistant™ helps you create a nice interface
by making it easy to align controls with other controls. But there
is more to a professional, polished interface than simply aligning
controls. We all think we know how to create a nice interface
because we have used lots of applications. But using an interface
is a lot different from designing one. If you haven’t done so
already, read Apple’s Macintosh Human Interface Guidelines. This
comprehensive guide will teach you what you need to know to
give your application a professional interface. You will also learn
the reasons behind the implementation of many of the features
of the Macintosh user interface. Apple’s Macintosh Human Inter-
face Guidelines is part of the Inside Macintosh series published by
Addison-Wesley and can purchased through most bookstores.
You can also download it for free through Apple’s Developer
World web site at www.devworld.apple.com.
Building a User Interface

	CHAPTER 1 Building a User Interface
	Contents
	Working with Windows
	Window Types
	Document
	Movable Modal
	Modal Dialog
	Floating
	Plain Box
	Shadowed Box
	Rounded

	Creating Windows
	Removing Windows

	Interacting with the User Through Controls
	Adding, Changing and Removing Controls
	Adding Controls
	Selecting Controls
	Changing a Control’s Position
	Changing a Control’s Properties with the Properties window
	Removing Controls

	Understanding Control Layers
	Understanding The Focus
	Changing The Tab Order
	The Appearance of Controls
	Button Controls for Performing Actions
	PushButton
	CheckBox
	RadioButton

	Controls for Displaying and Entering Text
	StaticText
	EditField

	Controls for Displaying and Entering Numeric Values
	ScrollBar
	Slider
	ProgressBar

	Controls for Presenting the User a List of Choices
	ListBox
	PopupMenu

	Controls for Visually Grouping Other Controls
	GroupBox
	TabPanel

	Controls for Displaying Graphics and Pictures
	Line
	Rectangle
	RoundRectangle
	Oval
	Canvas

	Controls for Playing Movies and Music
	MoviePlayer
	NotePlayer

	Controls for Handling Communications
	Serial
	Socket

	The Timer Control
	Changing The Tab (Control) Order
	Aligning Controls with Other Controls
	Spacing Controls Evenly

	Adding Menus
	Adding Menus
	Adding a Help Menu
	Adding Menu Items
	Adding a Submenu
	Moving Menu Items
	Removing Menu Items

	Apple’s Macintosh User Interface Guidelines

